Реферат на тему история геометрии

Содержание

История возникновения геометрии

История возникновения геометрии

Заглянем в прошлое, когда зародилась наука геометрия.

Для первобытных людей важную роль играла форма окружавших их предметов. По форме и цвету они отличали съедобные грибы от несъедобных, пригодные для построек породы деревьев от тех, которые годятся лишь на дрова, вкусные орехи от горьких и т.д. Особенно вкусными казались им орехи кокосовой пальмы, которые имеют форму шара. А добывая каменную соль, люди наталкивались на кристаллы, имевшие форму куба. Так, овладевая окружающим их миром, люди знакомились с простейшими геометрическими формами.

Уже 200 тысяч лет тому назад были изготовлены орудия сравнительно правильной геометрической формы, а потом люди научились шлифовать их. Специальных названий для геометрических фигур, конечно, не было. Говорили: «такой же, как кокосовый орех» или «такой же, как соль» и т.д.

А когда люди стали строить дома из дерева, пришлось глубже разобраться в том, какую форму следует придавать стенам и крыше, какой формы должны быть бревна. Сами того не зная, люди все время занимались геометрией: женщины, изготавливая одежду, охотники, изготавливая наконечники для копий или бумеранги сложной формы, рыболовы, делая такие крючки из кости, чтобы рыба с них не срывалась.

Когда стали строить здания из камня, пришлось перетаскивать тяжелые каменные глыбы. Для этого применялись катки. И заметили, что перекатка проще, если взять кусок дерева с почти одинаковой толщиной в начале и в конце. Так люди познакомились с одним из важнейших тел – цилиндром. Скалками цилиндрической формы пользовались и женщины, раскатывая белье после стирки.

Перевозить грузы на катках было довольно тяжело, потому что сами древесные стволы весили много. Чтобы облегчить работу, стали вырезать из стволов тонкие круглые пластинки и с их помощью перетаскивать грузы. Так появилось первое колесо.

Но не только в процессе работы знакомились люди с геометрическим фигурами.

Издавна они любили украшать себя, свою одежду, свое жилище (бусинки, браслеты, кольца, украшения из драгоценных камней и металлов, роспись дворцов).

Для того, чтобы взимать налоги с земли, необходимо было знать их площадь. Гончару необходимо было знать, какую форму следует придать сосуду, чтобы в него входило то или иное количество жидкости. Астрономы, наблюдавшие за небом и дававшие на основе этих наблюдений указания, когда начинать полевые работы, должны были научиться определять положение звезд на небе. Для этого понадобилось измерять углы.

Так практическая деятельность людей привела к дальнейшему углублению знаний о формах фигур, развитию геометрии. Люди стали учиться измерять и площади, и объемы, и длины и т.д.

Древние египтяне были замечательными инженерами. До сих пор не могут до конца разгадать загадки огромных гробниц Египетских царей – Фараонов.

Пирамиды – а они построены более 5 тыс. лет назад – состоят из каменных блоков весом 15 тонн, и эти «кирпичики» так подогнаны друг к другу, что не возможно между ними протиснуть и почтовую открытку. А при строительстве использовали лишь простейшие механизмы – рычаги и катки.

«Все боится времени, но само время боится пирамид».

В Вавилоне при раскопках ученые обнаружили остатки каменных стен, высотой в несколько десятков метров, а высота Вавилонской башни достигает 82 метра.

Без математических знаний все эти сооружения невозможно было бы построить. И все же математические знания египтян и вавилонян были разрозненные и представляли собой свод правил, проверенных практикой, поэтому правила надо было зазубривать, не понимая, почему надо применять то, а не другое.

Почти все великие ученые древности и средних веков были выдающимися геометрами. Девиз древней школы был: «Не знающие геометрии не допускаются!»

Настает время привести все разрозненные знания в систему.

Геометрия… откуда взялось это слово? Что оно означает? Попробуем разгадать его смысл. Ведь вам постоянно встречаются похожие слова: география, геология, геодезия… а есть еще геоботаника и т.п. это все названия различных наук или разделов наук. Со смыслом слова география вы уже знакомы. «Гео» означает «Земля», «метр» — это единица измерения длины (от греческого слова «метрео» — «измеряю». Таким образом, получается, что геометрия в переводе с греческого означает «измерение земли» или «землемерие».

«Геометрия была открыта египтянами и возникла при измерении земли. Нет ничего удивительного в том, что эта наука как и другие, возникла из потребностей человека. Всякое возникающее знание из несовершенного состояния переходит в совершенное. Зарождаясь путем чувственного восприятия, оно постепенно становится предметом рассмотрения и наконец, делается достоянием разума». Эти замечательные слова приписывают греческому ученому Евдему Родосскому, жившему в IV в.до н.э.

В «Энциклопедическом словаре юного математика» написано: «Геометрия – одна из наиболее древних математических наук. Первые геометрические факты мы находим в вавилонских клинописных таблицах и египетских папирусах (III тысячелетие до н.э.), а также в других источниках».

И наиболее удачно была изложена геометрия, как наука о свойствах геометрических фигур, греческим ученым Евклидом (III в. до н. э.) в своих книгах «Начала». Евклид жил в Александрии, был современником царя Птоломея I и учеником Платона. Славу Евклиду создал его собирательный труд «Начала». Произведение состояло из 13 томов, описанная в этих книгах геометрия получила название Евклидова. Величайшая заслуга его состояла в том, что он подвел итог построению геометрии придал ее изложению столь совершенную форму, что на 2 тысячи лет «Начала» стали основным руководством по геометрии. В течение многих веков «Начала» были единственной учебной книгой, по которым молодежь изучала геометрию. Были и другие. Но лучшими признавались «Начала» Евклида. И даже сейчас, в наше время, учебники написаны под большим влиянием «Начал» Евклида.

Конечно, геометрия не может быть создана одним ученым. В работе Евклид опирался на труды десятков предшественников и дополнил работу своими открытиями и изысканиями. Сотни раз книги были переписаны от руки, а когда изобрели книгопечатание, то она много раз переиздавалась на языках всех народов и стала одной из самых распространенных книг в мире.

В одной легенде говорится, что однажды египетский царь Птолемей I спросил древнегреческого математика, нет ли более короткого пути для понимания геометрии, чем тот, который описан в его знаменитом труде, содержащемся в 13 книгах.

Ученый гордо ответил: » В геометрии нет царской дороги».

Возникновение геометрии

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение геометрия ионийский натурфилософия

Возникновение геометрии вызвано потребностью человека измерять землю. Слово «геометрия» означает землемерие. Таким образом, первые геометры были преимущественно землемерами. На заре своего развития, несколько тысяч лет тому назад, геометрия Египта и Вавилона состояла из отдельных правил, полученных опытным путем и предназначавшихся главным образом для вычисления площадей и границ земельных участков.

В последующие века в связи с развитием торговли и ремесел развивается и геометрия, содержание которой значительно усложняется. Перед геометрией возникли новые задачи, связанные с измерением емкости сосудов, вычисление объемов различных тел, вообще задачи, связанные с формой, размерами и взаимным расположением различных предметов.

1. Возникновение геометрии

Наши первоначальные представления о геометрических формах относиться к эпохе древнего каменного века — палеолита. Уже тогда люди изготовляли орудия для охоты и рыболовства в форме ромбов, треугольников, сегментов. В эпоху позднего палеолита они стали украшать свои жилища наскальными рисунками и статуэтками, имевшими ритуальное значение. Таковы, например, рисунки в пещерах Франции и Испании пятнадцати тысячелетней давности.

С наступлением неолита произошел переход от простого собирания пищи к её производству, от охоты и рыболовства к земледелию. Постепенно рыболовы и охотники сменялись первобытными земледельцами, которые вели оседлый образ жизни. Появились простейшие ремесла. В эпоху позднего неолита люди научились плавить медь и бронзу, изготовлять орудия производства и оружие. Это повлекло оживление торговли на уровне обмена. Возникает необходимость измерения длины и емкости тел. Единицы измерения были грубы и исходили из размеров человеческого тела. При возведении построек стали вырабатываться правила построений по прямым линиям и под прямым углом. Во многих странах людей, занимавшихся межеванием, называли «натягивателями веревки». Слово «линия» происходит от латинского слова linum- лен, льняная нить, что говорит о связи между ткацким ремеслом и зарождением геометрии.

Человек неолита обладал острым чувством геометрической формы. Обжиг и раскраска глиняных сосудов, изготовление камышовых циновок, корзин и тканей, обработка металлов вырабатывали геометрические представления. Неолитические орнаменты радовали глаз, выявляя равенство, симметрию, подобие фигур. Такого рода орнаменты оставались в ходу и в исторические времена — византийская и арабская мозаика, персидские и китайские ковры. Первоначально ранние орнаменты, возможно, имели религиозное или магическое значение, но постепенно преобладающим стало их эстетическое значение.

В религии каменного века, пронизанной таинством и магией, существовали «магические» фигуры (пятиконечная звезда, свастика). Это говорит о культово-обрядовых и эстетических корнях математической и геометрической науки.

Даже у самых отсталых племен мы находим какой-то отсчет времени и, следовательно, какие-то сведенья о движения Солнца, Луны и планет. Сведенья этого рода приобрели более точный характер с развитием земледелия и торговли. Использование лунного календаря относится к очень давней эпохе в истории человечества, так как рост растений связывали с фазами Луны. Во время путешествий люди пользовались созвездиями как ориентирами. Все это дало некоторые сведения о свойствах окружности, сферы, об углах. Это был еще один путь, по которому шло развитие геометрических понятий.

Геометрические знания в Древнем Египте. Современная наука располагает сравнительно небольшим числом египетских математических документов — около пятидесяти папирусов. Самым древним из них является «московский папирус», относящийся к эпохе 1850 г. до н.э. и содержащий 25 задач с решениями.

В 1858 году в тайниках одной из египетских пирамид был найден папирус размером 544 Ч 33 см ( размеры «московского папируса» 544 Ч 8 см), относящийся к 1650 г. до н.э., составленный писцом Ахмесом и содержащий 84 задачи с решениями еще более раннего происхождения. Папирус ныне хранится в Британском музее, носит название «папирус Ахмеса», «папирус Райнда» или «лондонский папирус».

Другие папирусы относятся к более позднему периоду, а их содержание во многом повторяет «московский»и «лондонский». В задачах речь идет о количестве хлеба и различных сортов пива, о кормлении животных и хранении зерна. Геометрические задачи касаются преимущественно измерений и содержат правила вычисления площадей треугольников и трапеции.

2. Геометрия в Древнем Египте и Индии

Судя по одной из задач папируса Ахмеса, египтянам было известно свойство линий трапеции. Этот факт подтверждается рисунками на стенах храма Эдфи в Верхнем Египте, сделанными в более поздний период ( 2 в. До н.э.). В папирусах есть правила для вычисления объемов таких тел, как куб, параллелепипед, цилиндр, причем все они рассматриваются конкретно как сосуд для хранения зерна.

В Древнем Египте не было терминов «фигура», «сторона фигуры». Вместо этого использовались слова «поле», «границы поля», «длина поля».Однако и крупнейший историк древности Геродот, и философ Демокрит, и сам Аристотель именно Египет считали колыбелью геометрии. Вот что пишет об этом древнегреческий ученый Евдем Родосский. «Геометрия была открыта египтянами и возникла при измерении земли вследствие разливов Нила, постоянно смывающего границы участков. Нет ничего удивительного, что эта наука, как и другие, возникла из практических потребностей человека. Всякое возникающее знание из несовершенного состояния переходит в совершенное».

Геометрия в Вавилоне. Возделывание почвы в районах блуждающих Тигра и Евфрата, текущий с Армянского нагорья, требовало большого технического искусства и регулировки, чем в районе Нила. К тому же Двуречье было перекрестком многочисленных караванных путей. Вместе с товарами в Вавилон попадали знания других народов.

Шумеры писали на глиняных плитках, которые в большом количестве находят при раскопках. В табличках даны способы решения практических задач, связанных с земледелием, строительством и торговлей.

Гордостью вавилонян по праву считается изобретение позиционной системы счисления, что существенно повышало их вычислительные возможности.

Шестидесятеричная позиционная система счисления позволила вавилонской астрономии приобрести характер настоящей науки. От вавилонян ведет начало деления круга на 360 градусов, деление градуса на 60 минут, минуты — на 60 секунд.

Основной чертой геометрии вавилонян был ее арифметико-алгебраический характер. Как и в Египте, геометрия развивалась на основе практических задач измерения, но геометрическая форма задачи обычно являлась только средством для постановки алгебраической проблемы.

Тексты глиняных табличек вавилонян содержат правила для вычисления площадей простых прямолинейных фигур и для объемов простых тел. Теорема Пифагора была известна не только для частных случаев, но и в полной общности.

Помимо простейших фигур, рассматривавшихся в Египте, математики Вавилона изучали некоторые правильные многоугольники, сегменты круга. Решались также задачи на подобие фигур. Пропорциональных отрезков, образующихся на прямых, пересеченных несколькими параллельными прямыми, была известна задолго до Фалеса. Это подтверждают клинописные таблички с задачами на построение пропорциональных отрезков путем проведения в прямоугольном треугольнике параллелей к одному из катетов. Известно было и свойство средней линии трапеции.

Древнеиндийская геометрия имела ярко выраженный практический характер и была тесно связана как с повседневными потребностями, так и с религиозными обрядами, в частности с культом жертвоприношения. В части дошедших до нас под названием « Сульва- сутра» священных древнеиндийских книг излагаются свойства фигур, связанных с построением алтарей-жертвенников.

В этих книгах встречаются вычисления площадей, построения квадрата по данной его стороне, деление отрезка пополам, есть примеры практического применения подобия треугольников и теоремы Пифагора, которая имела следующую формулировку: «квадрат диагонали прямоугольника равен сумме квадратов его большей и меньшой сторон. Квадрат на диагонали квадрата в два раза больше самого квадрата».

В «Сутрах» правила и приемы приводят так же, как у египтян и вавилонян, без каких-либо объяснений. Вот как выглядит «правило Катиайаны» для построения квадрата, равновеликого кругу: «Разделить 15 равных частей и взять 13 таких частей для стороны квадрата, равного по площади данному кругу». А вот правило для построения прямого угла — перпендикуляра к направлению жертвенника: «К концам отрезка длиной 39 прикрепим концы веревки длиной 51 с узлом на расстоянии 15 от одного из концов; держа за узел и, подтянув веревку, получим прямой угол».

Началом учению о тригонометрических величинах послужила замена хорды AB окружности полухордовой AC — линей синуса, которую индейцы называли «ардхаджива» (а позже просто джива). Арабы при переводе исказили это слово в «джайб», что в 12 в. Было переведено на латынь словом sinus. Косинус индейцы называли «котиджива», то есть синус остатки (до четверти окружности), что по-латыни звучало как sinus complementi — синус дополнения, то есть sin ( 90°)

Интересно, что результаты «Сульва-сутр» не всегда встречаются в более поздних манускриптах, что говорит о существовании различных традиций, связанных с различными школами в индийской науке.

3. Геометрия в Древнем Китае и Греции

Древний Китай. Все сочинения, содержащие математические знания китайских ученых, дошли до нас от периода Хань, но в них содержится материал более раннего происхождения. Самое древнее китайское математико-астрономическое сочинение «Чжоу-би», написанное около 1100 г. до н.э., в первой главе содержит предложение, относящиеся к прямоугольному треугольнику, среди которых — и теорема Пифагора. В этом же сочинении содержится правило для определения площади круга: «Умножь диаметр сам на себя, раздели на четыре, возьми три раза»

В трактате «Математика в девяти книгах» первая книга названа «Измерение полей» и содержит задачи на вычисление площадей земельных участков различной геометрической формы. Среди приведенных фигур имеются треугольники, трапеции, прямоугольники, круги, круговые сегменты, сектора и кольца. Правила вычисления площадей прямолинейных фигур в основном совпадают с современными, но терминология еще несовершенна; вместо понятия «трапеция» употребляется название «косое поле», вместо «сегмента» — «поле в виде лука» и т.д. Нет особого термина для радиуса, вместо него всегда задается диаметр.

Девятая книга трактата имеет название «Гоу-гу» — так назывались катеты прямоугольного треугольника, причем гоу -вертикальный катет, гу- горизонтальный катет. Все 24 задачи этой главы решаются по правилу «гоу-гу», связывающему катеты и гипотенузу прямоугольного треугольника, то есть по теореме Пифагора.

Начало греческой науки положила ионийская школа натурфилософии. Ее основателем считается милетский купец, политический деятель, астроном, математик и философ Фалес.

Античная традиция единодушно называет Фалеса отцом греческой науки, первым из семи мудрецов Древней Греции. Ученик Аристотеля Евдем Родосский называет Фалеса первым астрономом, римский писатель и ученый Плиний Старший — первым физиком, а карфагенянин Апулей — первым геометром: «Фалес Милетский — один из тех знаменитых семи мудрецов и, несомненно, самый великий из них — ведь это он был у греков первым изобретателем геометрии, самым опытном испытателем природы, самым сведущим наблюдателем светил, — проводя маленькие черточки, делал великие открытия: он изучал смены времена года, ветров дуновения, планет движения, грома дивное грохотание, звезд по кругам своим блуждания, солнца ежегодные обращения, а также луну — как она прибывает, родившись, как убывает, старея, и почему исчезает, затмившись».

Легенды рассказывают о том, как Фалес посрамил египетских мудрецов, найдя высоту пирамиды по ее тени: «Когда тень от вертикально столба будет той же длины, что и длина столба, тогда тень от пирамиды будет равна ее высоте». Еще рассказывают, будто Фалес доказал, что расстояния от середины гипотенузы прямоугольного треугольника до вершин этого треугольника равны.

Главная заслуга Фалеса состоит в том, что он, познакомившись в странах Востока с некоторых геометрическими положениями, применявшимися для решения практических задач, проявил к ним теоретический интерес и попытался их обосновать. Именно с Фалеса начинается постепенное преобразование эмпирической египетской и вавилонской математики в греческую дедуктивную математику. По словам Плутарха, «Фалес был в то время единственным ученым, которых в своих исследованиях пошел дальше того, что нужно было для практических потребностей, все остальные получили звание ученых за свое искусство в государственных делах». Вот почему из семи мудрецов самым известным является Фалес — первый естествоиспытатель и философ

Появление планиметрии.«Золотой век» Греции, ознаменовавшийся в 5 веке до н.э. победой над Персией, породил условия для появления первой в истории человечества группы критически мыслящих ученых — «софистов»

После Анаксагора перспективой занимался автор атомистической теории строения Вселенной, известный философ Демокрит из Абдер во Фракии. Как и Фалес, свои первоначальные знания Демокрит почерпнул на Востоке: «Никто не превзошел меня в построении фигур из линий, сопровождающемся доказательством, даже арпадонапты в Египте».

Свою геометрию Демокрит строил на основе атомистической структуры пространства: линии, поверхности, объемы считались им состоящими из большого числа конечных и далее неделимых элементов. Демокрит установил, что объем пирамиды равен третьей части объема призмы, а объем конуса — третьей части объема цилиндра с теми же основанием и высотой. Как сообщают Плутарх и Аристотель, он разбивал конус на ряд наложенных друг на друга кружков малой толщены, после чего находил объем всего конуса. В рассуждения Демокрита содержались зачатки исчисления бесконечно малых, впоследствии использованные Архимедом при вычислении площадей и объемов фигур.

Первый систематический курс планиметрии принадлежит ионийскому философу и математику Гиппократу из Хиоса. В этом сочинении Гиппократа уже в полном объеме применяется принцип логического заключения от одного утверждения к другому. «Начала» Гиппократа включали в себя теорию параллельных, сумму углов треугольника, площади многоугольника и вычисление площади круга. Гиппократ применяет теорему Пифагора, но и соответствующее неравенство для непрямоугольных треугольников. «Начала» Гиппократа Хиосского составили содержание первых четырех книг «Начала» Евклида.

«Начала» Гиппократа Хиосского доказывают существование уже упорядоченной плоскостной геометрии в Древней Греции.

4. Пифагорская академия

Представителями другой большой научно философский школы, возникшей ок. 530 г. до н.э., были пифагорейцы, назвавшие себя в чести философа, мистика и политического деятеля Пифагора. Пифагорейцы в противовес софистам подчеркивали реальность изменений и стремились найти в природе и обществе неизменное. Для этого они изучали геометрию, арифметику, астрономию и музыку — так называемый «квадривиум». Позднее, в 360 г до н.э., Платон, сформулировал идеалы рабовладельческой аристократии, предписал для нее обязательное изучение «квадривиума» для понимания законов Вселенной и умения управлять народом.

В геометрию пифагорейцев привлекали прежде всего свойства фигур, которые могут быть выражены числовыми соотношениями. Поэтому в особом почете оказалось соотношение между сторонами в прямоугольном треугольнике, которое вошло в науку как теорема Пифагора. О том, что это соотношение приписывается Пифагору, сообщает только Прокл, причем сам относится к этому с недоверием. Он же пишет о предании, что в знак благодарения за доказательство этой теоремы Пифагор принес в жертву богам 100 быков.

Вполне возможно, что ее первое доказательство действительно принадлежит школе Пифагора или даже ему самому, но это соотношение было известно и в Вавилоне времен царя Хаммурапи, и в Древнем Китае задолго до Пифагора.

Пифагорейцам были известны некоторые свойства правильных многоугольников и правильных многогранников. Они показали, как заполнить плоскость правильными треугольниками, шестиугольниками, квадратами, умели с помощью циркуля и линейки построить не только правильные треугольник, четырехугольник, шести угольник, но и пяти угольник и десятиугольник. Последние две фигуры были нужны пифагорейцам для постарения пятиконечной звезды — пентаграммы — служившей символом школы Пифагора. С пентаграммой связана легенда о том, как один из пифагорейцев по изображенной на дверях дома пятиконечной звезде нашел место, где после продолжительной болезни умер его соратник, после чего хозяин дома в знак благодарности за заботу о больном человеке был щедро вознагражден.

Главным, наиболее значительным среди открытий пифагорейской школы, было открытие несоизмеримости диагонали и стороны квадрата. Возможно, что это было связано с исследованием среднего геометрического, служившего для пифагорейцев символом аристократии. Чему равно среднее геометрическое единицы и двойки, двух священных символов? Легенда приписывает это открытие самому Пифагору.

Таким образом, геометрия возникла на основе практической деятельности людей и в начале своего развития служила преимущественно практическим целям. В дальнейшем геометрия сформировалась как самостоятельная наука, занимающаяся изучением геометрических фигур. Высокий уровень развития современной техники ставит перед геометрией все новые и новые задачи. В настоящее время геометрия определяется как часть математики, изучающая пространственную форму, размеры и взаимное расположение фигур.

Итак, Геометрия- один из важнейших предметов, причем не только среди предметов математического цикла, но и вообще среди всех школьных предметов. Её возможности охватывает необычайно широкий арсенал, включает в себя чуть ли не все мыслимые цели образования и развития человечества.

Один великий человек как-то воскликнул: «Все вокруг геометрия!». Сегодня уже в начале 21 столетия мы можем повторить это восклицание еще с большим изумлением. В самом деле, посмотрите вокруг — всюду геометрия! Современные здания и космические станции, авиалайнеры и подводные лодки, интерьеры квартир и бытовая техника — все имеет геометрическую форму. И это уже достаточно, чтобы ответить на вопрос: «Нужна ли нам Геометрия?»

Во-первых, мировая наука начиналась с геометрии. Ребенок, еще не научившийся говорить, познает геометрические свойства окружающего мира. Многие достижения древних геометров вызывают изумление у современных ученых, и несмотря на то, что у них полностью отсутствовал алгебраический аппарат.

Во-вторых, геометрия является одной составляющей общественной культуры. Некоторые теоремы геометрии являются одними из древнейших памятников мировой культуры. Человек не может по-настоящему развиваться культурно и духовно, как я считаю, если он не изучал в школе геометрию, так как геометрия возникла не только из практических, но и из духовных потребностей человека. Таким образом роль возникновения геометрии в жизни человека неоценима.

1. Глейзер Г. И. История математики в школе 7-8 классы. Пособие для учителей.- М.:Просвещение,1982.

2. Гаврилюк Л. Урок первый. — М., Математика. Еженедельное учебно-методическое приложение к газете «Первое сентября»,2001.

3. Свешников А. Путешествие в историю математики. — М.1995.

4. Болтянский В. Г. Математика атакует родителей. — М.: Педагогика, 1973.

5. Атанасян Л.С. Геометрия 7-9. — М.:2003.

6. Феоктистов И. Геометрия до Евклида в очерках и задачах. — М.: Чистые труды, 2005.

Размещено на Allbest.ru

Подобные документы

Геометрия как раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Основные этапы становления и развития данной науки, ее современные достижения и перспективы.

Изучение этапов развития геометрии – науки, изучающей пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Геометрия Древнего Египта, Греции, средневековья. Постулаты Н.И. Лобачевского.

Геометрия как раздел математики, изучающий пространственные структуры, отношения и их обобщения. Планиметрия, стереометрия, проективная геометрия. История развития науки. Исследование свойств плоских фигур. Сущность понятий «полупрямая», «треугольник».

Геометрия на Востоке. Греческая геометрия. Геометрия новых веков. Классическая геометрия XIX века. Неевклидовая геометрия. Геометрия XX века. Современная геометрия во многих своих дисциплинах выходит далеко за пределы классической геометрии.

Происхождение Неевклидовой геометрии. Возникновение «геометрии Лобачевского». Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами).

Порядок проведения эксперимента «Иллюзии зрения», его сущность и содержание. Постулаты Евклидовой геометрии. Аксиомы геометрии Лобачевского. Сравнительный анализ двух геометрий, их отличительные и сходные черты, особенности преподнесения, доказательства.

Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.

Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.

Особенности периода математики постоянных величин. Создание арифметики, алгебры, геометрии и тригонометрии. Общая характеристика математической культуры Древней Греции. Пифагорейская школа. Открытие несоизмеримости, таблицы Пифагора. «Начала» Евклида.

История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.

PPT, PPTX и PDF-файлы представлены только в архивах.

© 2000 — 2017, ООО «Олбест» Все права защищены

История геометрии

Геометрия возникла очень давно, это одна из самых древних наук. Геометрия (греческое, от ge — земля и metrein — измерять)— наука о пространстве, точнее — наука о формах, размерах и границах тех частей пространства, которые в нем занимают вещественные тела. Таково классическое определение геометрии, или, вернее, таково действительное значение классической геометрии. Однако современная геометрия во многих своих дисциплинах выходит далеко за пределы этого определения. Развитие геометрии принесло с собой глубоко идущую эволюцию понятия о пространстве. В том значении, в котором пространство как математический термин широко употребляется современными геометрами, оно. уже не может служить первичным понятием, на котором покоится определение геометрии, а, напротив, само находит себе определение в ходе развития геометрических идей.

Важную роль играли и эстетические потребности людей: желание украсить свои жилища и одежду, рисовать картины окружающей жизни. Все это способствовало формированию и накоплению геометрических сведений. За несколько столетий до нашей эры в Вавилоне, Китае, Египте и Греции уже существовали начальные геометрические знания, которые добывались в основном опытным путем, но они не были еще систематизированы и передавались от поколения к поколению в виде правил и рецептов, например, правил нахождения площадей фигур, объемов тел, построение прямых углов и т.д. Не было еще доказательств этих правил, и их изложение не представляло собой научной теории.

Геометрия на Востоке

Родиной геометрии считают обыкновенно Вавилон и Египет. Греческие писатели единодушно сходятся па том, что геометрия возникла в Египте и оттуда перенесена в Элладу.

Первые шаги культуры всюду, где она возникала, в Китае, в Индии, в Ассирии, в Египте, были связаны с необходимостью измерять расстояния и участки на земле, объемы и веса материалов, продуктов, товаров; первые значительные сооружения требовали нивелирования, выдержанной вертикали, знакомства с планом и перспективой. Необходимость измерять промежутки времени требовала систематического наблюдения над движением светил, а следовательно, измерения углов. Всё это было неосуществимо без знакомства с элементами геометрии, и во всех названных странах основные геометрические представления возникали частью независимо друг от друга, частью — в порядке преемственной передачи. Однако точных сведений о познаниях египтян в области геометрии мы не имеем. Единственным первоисточником, дошедшим до нас, является папирус, написанный при фараоне Payee ученым писарем его Ахмесом (Ahmes) в период между 2000 и 1700 г. до нашей эры. Это — руководство, содержащее различного рода математические задачи и их решения; значительное большинство задач относится к арифметике, меньшая часть — к геометрии. Из последних почти все связаны с измерением площадей прямолинейных фигур и круга, причем Ахмес принимает площадь равнобедренного треугольника равной произведению основания на половину боковой стороны, а площадь круга — равной площади квадрата, сторона которого меньше диаметра на 1/3 его часть (это дает л=3,160. ); площадь равнобочной трапеции он принимает равной произведению полусуммы параллельных сторон на боковую сторону. Как видно из нескольких других задач Ахмеса, египтяне в эту пору знали, что углы прямоугольного треугольника определяются отношением катетов. Как они пришли ко всем этим правилам, знали ли наиболее просвещенные жрецы — хранители египетской науки, — что их данные являются лишь приближенными, об этом мы не имеем никаких сведений. Столь же мало знаем мы о том, что прибавило к этим познаниям египтян следующее тысячелетие; сколько-нибудь значительных успехов они во всяком случае не сделали. Трудно сказать вполне точно, что из этих сведений египтяне открыли сами и что они заимствовали от вавилонян и индусов. Несомненно лишь то, что геометрические сведения вавилонян были столь же отрывочны и столь же скудны. Им принадлежит деление окружности на 360о; они имели сведения о параллельных линиях и точно воспроизводили прямые углы; всё это было им необходимо при астрономических наблюдениях, которые, по-видимому, главным образом и привели к их геометрическим знаниям. Вавилоняне знали, что сторона правильного вписанного в круг шестиугольника равна радиусу. Характерным для этого первого, в известном смысле доисторического, периода геометрии являются две стороны дела: во-первых, установление наиболее элементарного геометрического материала, прямо необходимого в практической работе, а во-вторых, заимствование этого материала из природы путем непосредственного наблюдения («чувственного восприятия», по словам Евдема Родосского). Наиболее характерное выражение этого непосредственного апеллирования к интуиции как единственному удостоверению правильности высказанной истины мы находим у индусского математика Ганеши.

2. Греческая геометрия

Греческие авторы относят появление геометрии в Греции к концу VII в. до н. э. и связывают его с именем Фалеса Милетского (639—548), вся научная деятельность которого изображается греками в полумифическом свете, так что точно ее восстановить невозможно. Достоверно, по-видимому, то, что Фалес в молодости много путешествовал по Египту, имел общение с египетскими жрецами и у них научился многому, в том числе геометрии. Возвратившись на родину, Фалес поселился в Милете, посвятив себя занятиям наукой, и окружил себя учениками, образовавшими так называемую Ионийскую школу. Фалесу приписывают открытие ряда основных геометрических теорем (например, теорем о равенстве углов при основании равнобедренного треугольника, равенстве вертикальных углов и т. п.). Важнее, по-видимому, другое. Трудно допустить, чтобы наука, «хотя бы в зачаточном своем состоянии, была перенесена на треческую почву одним чел овеком. Важио то, что в Элладе в иных условиях экономических отношений и социальной жизни образовался класс, для того времени несомненно прогрессивный, не только усвоивший восточную культуру, но и развивший ее до неузнаваемой высоты, создавший, таким образом, уже свою высокую эллинскую культуру. В условиях быстро развивавшейся архитектуры, мореплавания, гражданской и военной техники, в условиях развертывавшихся уже в связи с этим исследований в области астрономии, физики, механики, требовавших точных измерений, не только очень скоро обнаружились противоречия и неправильности египетской геометрии, но и в исправленном виде ее скудный материал перестал удовлетворять возросшим потребностям. Элементарные приемы непосредственного наблюдения восточной геометрии были бессильны перед новыми задачами. Чтобы их разрешить, было необходимо оторвать геометрию от непосредственных задач измерения полей и постройки пирамид, — задач, узких при всей их важности, — и поставить ей неизмеримо более широкие задания. Этой тенденции и положено было начало Фалесом. Ионийская школа перенесла геометрию в область гораздо более широких представлений и задач, придала ей теоретический характер и сделала ее предметом тонкого исследования, в котором наряду с интуицией начинает играть видную роль и абстрактная логика. Абстрактно-логический характер геометрии, который в Ионийской школе только намечался, подернулся, правда, несколько мистическим флером у пифагорейцев, принял у Платона и Аристотеля более здоровые формы и в Александрийской школе нашел свое завершение. Была создана наука, широкая по замыслу, богатая фактическим материалом и, несмотря на свой абстрактный характер, дающая ряд чрезвычайно важных практических применений. Больше того, можно сказать, что именно в абстрактной структуре, которую получила геометрия в трудах греческих ученых с VI по III в. до н. э., и коренится возможность ее многообразного конкретного использования.

Самое слово «геометрия» недолго сохраняет свое первоначальное значение — измерения земли. Уже Аристотель ввел для такого измерения новый термин — геодезия. Однако и содержание этой новой дисциплины скоро тоже стали понимать в более широком смысле, который может быть лучше всего передается современным термином «метрическая геометрия». В трудах Фалеса, Пифагора, Платона, Демокрита, Гиппократа, Динострата, Никомеда, Аристотеля, если назвать только важнейших, с необычайной быстротой производятся установление и систематизация фактического материала классической геометрии. Нужно отметить, что нам известны лишь разрозненные звенья в цельной цепи развития геометрии; многие звенья и имена совершенно утрачены. Около IV в. до н. э. уже стали появляться сводные сочинения под названием «Начал геометрии», имевшие задачей систематизировать добытый геометрический материал. Такие «Начала» по свидетельству Прокла, составили Гиппократ Хиосский, Феодосии из Магнезии, Гиероним Колофонский и др. Ни одно из этих сочинений до нас не дошло: все они утратили свое значение и были забыты, когда появилось замечательное руководство по геометрии — «Начала» Евклида, жившего в конце IV — начале III в. до н. э.

Евклид жил в Александрии в эпоху, когда там образовался наиболее крупный центр греческой научной мысли. Опираясь на труды своих предшественников, Евклид создал глубоко продуманную систему, сохранявшую руководящую роль в течение свыше двух тысяч лет. «Составитель Начал» — это прозвище сделалось как бы собственным именем, под которым все позднейшие греческие математики разумели Евклида, а его «Начала» сделались учебником, по которому в течение двух тысячелетий учились геометрии юноши и взрослые. Даже те учебники, по которым ведется первоначальное обучение геометрии в наше время, по существу представляют собой переработку «Начал» Евклида.

Материал, содержащийся в «Началах», по существу охватывает элементарную геометрию, как мы ее понимаем в настоящее время. Метод построения геометрии у Евклида позже характеризовали словами — строить геометрию исключительно геометрическими средствами, не внося в нее чуждых ей элементов. Это означает прежде всего, что Евклид не прибегает к арифметическим средствам, т. е. к численным соотношениям. Равенство фигур у Евклида означает, что они могут быть совмещены движением, неравенство — что одна фигура может быть целиком или частями вмещена в другую. Равновеликость фигур означает, что они могут быть составлены из частей. Именно этими средствами, не прибегая даже к пропорциям, Евклид доказывает, что каждый многоугольник может быть преобразован в равновеликий треугольник, а треугольник — в квадрат.

Теорема Пифагора у Евклида имеет только то содержание, которое устанавливается его доказательством: квадрат, построенный на гипотенузе прямоугольного треугольника, может быть разложен на части, равновеликие квадратам, построенным на его катетах; связанное с этим алгебраическое соотношение численных значений гипотенузы и катетов ему совершенно чуждо. Но мало того, что Евклид не пользуется числовыми соотношениями, — он устанавливает геометрические соотношения, эквивалентные основным алгебраическим тождествам, установленным гораздо позже; этому посвящена почти половина второй книги «Начал».

Эпоха великих геометров (второй Александрийский период). Наиболее характерной чертой второй Александрийской эпохи является то, что она принесла с собой метрику, которой геометрии Евклида не доставало. Ту задачу, которую Евклид, может быть, сознательно обходил, — измерение, — Архимед поставил во главу угла. Это не случайно, а связано с тем прикладным направлением, которым проникнуто все творчество Архимеда, жившего в эпоху (III в. до н. э.), когда борьба между отдельными греческими государствами за независимость и за гегемонию достигла величайшего напряжения; старость же его протекла в годы, когда началась решительная борьба Эллады за самое ее существование. Легенды связывают всю защиту Сиракуз с именем Архимеда, который изобретал все новые и новые метательные орудия, отражавшие суда осаждавших. Сколько в этом правды, судить трудно. Но Плутарх свидетельствует, что деятельность инженера-практика Архимеда никогда не прельщала, он и не написал по этому предмету ни одного сочинения. В III в. до н. э. прикладные задачи стояли уже перед эллинскими учеными во весь рост. Заслуга Архимеда заключалась не в том, что он построил значительное число катапульт, а в том, что он установил теоретические основы, на которых в конечном счете и по сей день покоится машиностроение, — он фактически создал основы механики. Механика требовала вычисления масс, а следовательно, площадей и объемов, а также Центров тяжести; механика настоятельно требовала метрической геометрии; на этом и сосредоточено внимание Архимеда в геометрии. Трудности несоизмеримых отношений он преодолевает в том порядке, который по настоящее время остается по существу единственным средством не только практического вычисления, но и теоретического построения учения об иррациональных величинах, — путем составления последовательных приближений. Но на этом-то пути и было необходимо исключительное искусство, ибо тяжеловесная система счисления представляла самое слабое место греческой математики. Архимед пытался найти радикальные средства для преодоления трудностей счисления — этому посвящена его книга «Исчисление песка». К цели это не кривело. Это сочинение представляет собой лишнее свидетельство исключительного остроумия Архимеда, но не дает хороших средств для практического счета. Наиболее важным было приближенное вычисление квадратных корней, необходимое для приближенного же вычисления длины окружности; этому посвящено особое, небольшое сочинение, по существу заключающее приближенное вычисление периметров правильных 96-угольников, вписанного в окружность и описанного около нее.

Таким образом, творения Архимеда существенно отличаются от геометрии Евклида и по материалу и по методу; это — огромный шаг вперед, это — новая эпоха. В изложении этих достижений, однако, выдержана система Евклида: аксиомы и постулаты в начале каждого сочинения, тонко продуманная цепь умозаключений, претендующая на совершенство сети силлогизмов. Но, как и система Евклида, геометрия Архимеда постоянно отдает щедрую дань интуиции, причем только рядом с геометрической интуицией здесь появляется интуиция механическая.

Сочинения, посвященные истолкованию «Начал» появились рано. Первым комментатором Евклида был, по-видимому, еще Гемин Родосский, живший во II в. до н. э. занимались этим позднее Герои и Папп, а также Теон и другие, но их комментарии до нас либо вовсе не дошли, либо сохранились только в отрывках в передаче Прокла, который писал уже в V в. н. э. Комментарии Прокла сделались вскоре классическим произведением, с которым долго никто не конкурировал в деле истолкования «Начал». К тому же Прокл жил уже в эпоху полного упадка греческой науки, и на его долю выпало лишь подвести общий итог деятельности его великих предшественников. Значение комментаторов Евклида заключается главным образом, в том, что они выяснили слабые места его логической схемы. Не сделав еще ничего для существенного улучшения этой схемы, они указали те пути, по которым проникают в систему Евклида рассуждения, нарушающие выдержанную нить логических выводов. Немало было высказано насмешливых замечаний по поводу комментаторов Евклида: говорили, что они переливали из пустого в порожнее, делали ясное неясным. В этих упреках, конечно, много правды. Комментирование элементарного сочинения не требует больших знаний, и потому было написано много легкомысленных и бессодержательных сочинений по поводу «Начал» Евклида и по вопросу об основаниях геометрии вообще. Но никак нельзя отрицать того, что комментаторы Евклида, тщательно изучавшие «Начала» и глубоко их продумавшие, указали множество темных пунктов этого сочинения и отметили целый ряд свойств пространственных образов, которые должны лечь в основу логической системы геометрии.

3. Геометрия новых веков

. Прокл был уже, по-видимому, последним представителем греческой геометрии. Римляне не внесли в геометрию ничего существенного. Гибель античной культуры, как известно, привела к глубокому упадку научной мысли, продолжавшемуся около 1000 лет, до эпохи Возрождения. Это не значит, однако, что математика в этот период совершенно заглохла. Посредниками между эллинской и новой европейской наукой явились арабы. Когда несколько улегся ярый религиозный фанатизм, царивший в эпоху арабских завоеваний, в условиях быстро развивавшейся торговли, мореплавания и городского строительства стала развертываться и арабская наука, в которой математика играла очень важную роль. Евклид был впервые переведен на арабский язык, по-видимому, в IX в. За этим последовал перевод сочинений других греческих геометров, многие из которых только с этих переводах до нас и дошли. Однако математические интересы арабов были сосредоточены не столько на геометрии, сколько на арифметике и алгебре, на искусстве счета в

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *