Решебник по начертательной геометрии 1 курс

Содержание

Начертательная геометрия

Квалифицированная помощь студентам инженерно-технических специальностей в решении задач из курса начертательной геометрии. Теория и примеры из практики

Предмет начертательной геометрии

Начертательная геометрия – одна из фундаментальных дисциплин инженерного образования, где пространственные фигуры изучаются по их проекционным изображениям. Основной целью данной дисциплины является разработка методов изображения геометрических фигур на плоскости или на другой поверхности и дальнейшее их применение при решении задач.

Методы начертательной геометрии позволяют с высокой степенью точности решать математические задачи графически. В изобразительном искусстве, архитектуре и строительстве метод проекций позволяет получать наглядные изображения создаваемых объектов.

Задачи начертательной геометрии решаются графическим путем. Знание базовых правил и теорем позволяет решать сложные задания путем расчленения процесса их решения на ряд элементарных однотипных операций. Основополагающей операцией, которую приходится выполнять в процессе решения, является определение точки пересечения двух линий.

Начертательная геометрия является одним из лучших средств развития у человека пространственного воображения, логического мышления, без которых сложно представить любое инженерное творчество.

Основные виды задач

Метрическими называются задачи, в которых требуется определить действительные значения величин плоских фигур, углов, отрезков, расстояний или построить геометрические объекты заданных размеров.

В общем случае геометрические фигуры произвольно расположены по отношению к плоскостям проекций и проецируются на эти плоскости с искажением их линейных и угловых величин. Чтобы определить натуральную величину любой плоской фигуры, ее нужно перевести в положение, при котором она будет параллельна одной из плоскостей проекций.

Позиционными называются задачи, в которых требуется определить взаимное положение геометрических объектов – построить линию их пересечения или определить принадлежность точки некоторой фигуре. Для решения позиционных задач обычно используют ряд вспомогательных поверхностей. Их выбирают таким образом, чтобы они пересекались с заданными фигурами по линиям, которые просты для построения – например, по прямым и окружностям.

В начертательной геометрии существуют базовые задачи, без освоения которых невозможно дальнейшее изучение предмета. Это построение ортогональных проекций точек и поверхностей, определение следов прямых и плоскостей. Владение методами преобразования проекций позволяет самостоятельно анализировать и значительно упрощать решение многих задач.

Решение задач по начертательной геометрии

Решение задач по начертательной геометрии студентом на экзамене, в обязательных контрольных работах, рабочей тетради — главный показатель его успехов по изучению данной учебной дисциплины. Решение задач по начертательной геометрии требует определенных навыков по выполнению графических работ: — умения пользоваться чертежными инструментами и чертежными приборами а также умения чертить на компьютере в какой-либо из программ так называемых графических редакторов. Подготовленность по этому вопросу наиболее важна для успешного освоения курса начертательной геометрии. Постоянная работа в рабочей тетради над решением задач в течении учебного семестра и в период подготовки к экзамену обеспечит надежные знания по курсу начертательной геометрии.

Решение задач по начертательной геометрии требует: — изучения теоретического материала, соответствующих задаче тем начертательной геометрии; — составления плана — программы или алгоритма решения задачи, который необходимо символически записать; — выполнения графических построений в соответствии с планом решения задачи. Решение задач по начертательной геометрии предполагает оперирование не с самими геометрическими фигурами, а с их проекциями, и требование условия построить, определить, найти и т.п. означает, что нужно построить проекции (не менее двух) искомых геометрических фигур. Геометрическая фигура — любое множество точек.

Решение задач по начертательной геометрии онлайн

Решение задач по начертательной геометрии

Решение задач по начертательной геометрии

Данный сборник задач и упражнений соответствует программа курса начертательной геометрии для машиностроительных, приборостроительных и механико-технологических специальностей высших технических учебных заведений.

Сборник составлен в соответствии и применительно к учебнику «Курс начертательной геометрии» В. О. Гордона и М. А. Семенцова-Огиевского, из которого в данный сборник перенесен ряд примеров и задач.

Авторы стремились помочь изучающим курс в их самостоятельной работе. Этим определился характер пособия, а именно показ процесса решения ряда типовых задач, относящихся к основным вопросам курса. Вместе с тем даны и условия задач для самостоятельного их решения. Условия большинства задач подобны условиям решенных задач, но имеются также задачи и без решенных прототипов, что требует от учащегося проявления большей самостоятельности и творческой инициативы.

Ограничение курса начертательной геометрии в часах и его преимущественно одно семестровое прохождение обусловливают и программное ограничение круга рассматриваемых вопросов. Очевидно, это предельный минимум; авторы исходили из него при составлении сборника.

В основном задачи, решенные 1 ) и предлагаемые для решения, относятся к взаимному сочетанию геометрических элементов и их расположению в пространстве и к применению способов преобразования чертежа вращением и введением дополнительных плоскостей проекций. Объектами рассмотрения являются точки, прямые и кривые линии, плоские и некоторые другие поверхности — отдельно и в их взаимном расположении. Рассматриваются задачи на определение расстояний и углов, на построение аксонометрических проекций — прямоугольных — изометрических (с сокращением по оси y вдвое).

Чертежи в большинстве случаев даны в поэтапном их выполнении. Это облегчит чтение чертежей и рассмотрение последовательности их построений. Для лучшего понимания сущности вопроса и представле-

1 ) Их номера отмечаются звездочкой вверху.

ния пространственной картины в некоторых из решенных задач даны наглядные изображения. Даны также примеры составления планов решения задач и анализа полученных решений.

Такие сборники задач по начертательной геометрии с их решениями уже издавались, например, в 1928 г. «Сборник задач по ортогональным проекциям с подробными решениями» С. К. Руженцова и Б. А. Иванова. Опыт показывает их полезность.

Особенностью данного сборника является наличие ответов к задачам, предложенным для самостоятельного решения. Правильно ли решена задача? Этот вопрос при самостоятельном решении по большей части является открытым, что затрудняет работу учащегося. Для того чтобы он сам мог убедиться в правильности полученного им решения, в сборнике помещены ответы. Они даны в текстовой или графической форме в зависимости от поставленных в задаче вопросов. Ответ к задаче в форме чертежа содержит положение искомых элементов на фоне задания.

В сборнике даны преимущественно чертежи с указанием оси x как базы для отсчета размеров при построениях и для удобства при перечерчивании заданий. Наличие оси x как направляющей линии облегчает введение в чертеж любой информации и построение чертежей-ответов. Если же ось не показана (как это сделано в некоторых задачах), то ее роль для отсчета размеров может быть присвоена какой-либо из прямых на данном чертеже. Все это находится в логической связи с техническими чертежами, где всегда имеет место база отсчета, хотя и не обозначаемая так, как на чертежах в начертательной геометрии. Однако ось x сохраняет и присущее ей знaчениe линии nepeceчeния плоcкоcтeй пpоeкций V и H, что имеет значение для представления пространственной картины рассматриваемого положения. Но и вне этого значения (определяемого названием «ось проекций») такая прямая является неотъемлемой составляющей каждого чертежа для построения его по заданным размерам. При этом выбор положения оси не является ограниченным и определяется исходя из необходимости и целесообразности.

Авторы придерживаются в основном обозначений, примененных еще в XIX столетии отечественными учеными Н И. Макаровым и В. И. Курдюмовым и в настоящее время используемых в учебной литературе и в практике кафедр без каких-либо осложнений. Эти обозначения, в отличие от всех других, в достаточной степени просты, выразительны, легко читаемы и не загромождают чертежи.

В сборнике применен термин пpoeциpoвaть (от латинск. projicere) взамен пpoeктиpoвaть, так как последнее имеет и другое значение, а именно «разрабатывать, составлять проект» (например, сооружения, механизма, перевозок и т. д.). Переход на слово пpoeциpoвaть вызвал также такие названия, как пpoeциpующaя пpямaя, гopизoнтaльнo-пpoециpующaя плоскость и т. п.

В том же смысле, в каком в некоторых курсах начертательной геометрии применено слово «эпюр» (а иногда «эпюра»), в данном сборнике взято слово «чертеж» (что, вообще, не является новым).

Для лучшего понимания решенных в сборнике задач и усвоения построений рекомендуется перечерчивать исходный чертеж и выполнять на нем все описанные построения.

Следует обратить особое внимание на то, что для сравнимости полученного учащимся чертежа-ответа предложенной для самостоятельного решения задачи с приведенным в сборнике ответом необходимо как можно точнее воспроизвести чертеж-задание, пользуясь осью x как базой отсчета. При желании можно чертеж-задание увеличить что должно быть учтено при сравнении полученного ответа с ответом в сборнике.

При решении задач, для которых нет решенных прототипов, можно использовать помещенные в конце сборника краткие указания.

Выражение изoбpaзить наглядно, дать наглядное изображение, означает построить изображение в косоугольной фронтальной диметрической проекции (хотя бы в известной под названием «кабинетная»).

Рекомендуется при самостоятельном решении задач предварительно дать рисунок требуемого построения и составить план решения, как это сделано в сборнике для некоторых решенных задач, а лишь затем выполнять построение.

Согласованность данного сборника задач с учебником «Курс начертательной геометрии» В. О. Гордона и М. А. Семенцова-Огиевского не исключает возможности пользоваться другими учебниками, так как для понимания и решения задач по данному сборнику требуется знание тех основных положений, которые должны содержаться в любом учебнике. При этом, если имеется различие в некоторых обозначениях, можно сопоставить обозначения при помощи таблицы, которую можно найти в учебнике.

Для линий связи применена штрих-пунктирная линия с одной точкой между смежными штрихами. Но если линия связи проведена лишь для проверки правильности построения, то использована линия с двумя точками.

Номера решенных задач отмечены звездочками. Ответы на нерешенные задачи помещены в конце сборника.

Некоторые сокращения слов и условные обозначения в сборнике: пл.— плоскость;

горизонт. — горизонтальный, -ая, -ое; фронт.—фронтальный, -ая, -ое; X — перпендикулярно;

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *